Silibinin from Silybum marianum Stimulates Embryonic Stem Cell Vascular Differentiation via the STAT3/PI3-K/AKT Axis and Nitric Oxide.
نویسندگان
چکیده
Silibinin, the bioactive compound of milk thistle (Silybum marianum), exerts tissue protective and regenerative effects that may include stem cell differentiation toward vascular cells. The purpose of the present study was to investigate whether silibinin stimulates blood vessel formation from mouse embryonic stem (ES) cells and to unravel the underlying signaling cascade. Vascular branching points were assessed by confocal laser scanning microscopy and computer-assisted image analysis of CD31-positive cell structures. Protein expression of vascular markers and activation of protein kinases were determined by western blot. Nitric oxide (NO) generation was investigated by use of the fluorescent dye 4-amino-5-methylamino-2',7'-difluorofluorescein diacetate. Silibinin dose-dependently increased CD31-positive vascular branching points in embryoid bodies cultivated from ES cells. This was paralleled by increase of protein expression levels for the endothelial-specific markers vascular endothelial cadherin (VE-cadherin), vascular endothelial growth factor receptor 2, and hypoxia-inducible factor-1α. Moreover, silibinin increased activation of endothelial nitric oxide synthase (eNOS), which boosted generation of NO in embryoid bodies and enhanced phosphorylation of signal transducer and activator of transcription 3 (STAT3) as well as phosphoinositide 3-kinase (PI3-K) and AKT. Vasculogenesis, VE-cadherin expression, STAT3 and AKT phosphorylation, NO generation, and eNOS phosphorylation were inhibited by the small molecule STAT3 inhibitor Stattic, AKT inhibitor VIII, the PI3-K inhibitor LY294002, or the NOS inhibitor Nω-Nitro-L-arginine methyl ester hydrochloride. In conclusion, our findings indicate that silibinin induces vasculogenesis of ES cells via activation of STAT3, PI3-K, and AKT, which regulate NO generation by eNOS.
منابع مشابه
Silibinin protects against osteoarthritis through inhibiting the inflammatory response and cartilage matrix degradation in vitro and in vivo
Osteoarthritis (OA) is a degenerative joint disease characterized by cartilage degradation and inflammation. Silibinin, a polyphenolic flavonoid derived from fruits and seeds of Silybum marianum, has been reported to possess various potent beneficial biological effects, such as antioxidant, anti-cancer, hepatoprotective and anti-inflammatory activities. However, the anti-inflammatory effects of...
متن کاملPI3 K/Akt/mTOR-mediated translational control regulates proliferation and differentiation of lineage-restricted RoSH stem cell lines
BACKGROUND We have previously derived highly similar lineage-restricted stem cell lines, RoSH and E-RoSH cell lines from mouse embryos and CD9hi SSEA-1- differentiated mouse embryonic stem cells, respectively. These cell lines are not pluripotent and differentiate readily into endothelial cells in vitro and in vivo. RESULTS We investigated the signaling pathway that maintains proliferation of...
متن کاملA Novel Role of Silibinin as a Putative Epigenetic Modulator in Human Prostate Carcinoma.
Silibinin, extracted from milk thistle (Silybum marianum L.), has exhibited considerable preclinical activity against prostate carcinoma. Its antitumor and chemopreventive activities have been associated with diverse effects on cell cycle, apoptosis, and receptor-dependent mitogenic signaling pathways. Here we hypothesized that silibinin's pleiotropic effects may reflect its interference with e...
متن کاملSilibinin Regulates Lipid Metabolism and Differentiation in Functional Human Adipocytes
Silibinin, a natural plant flavonolignan is the main active constituent found in milk thistle (Silybum marianum). It is known to have hepatoprotective, anti-neoplastic effect, and suppresses lipid accumulation in adipocytes. Objective of this study was to investigate the effect of silibinin on adipogenic differentiation and thermogenic capacity of human adipose tissue derived mesenchymal stem c...
متن کاملSilibinin Inhibits LPS-Induced Macrophage Activation by Blocking p38 MAPK in RAW 264.7 Cells
We demonstrate herein that silibinin, a polyphenolic flavonoid compound isolated from milk thistle (Silybum marianum), inhibits LPS-induced activation of macrophages and production of nitric oxide (NO) in RAW 264.7 cells. Western blot analysis showed silibinin inhibits iNOS gene expression. RT-PCR showed that silibinin inhibits iNOS, TNF-α, and IL1β. We also showed that silibinin strongly inhib...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Planta medica
دوره شماره
صفحات -
تاریخ انتشار 2018